Whirlpool

CRC calculations:

the whys and the wherefores

was debugging a subtle bug in a

test program the other day, one
that used our Abbrevia product.
Nothing seemed to make sense: the
file was being decrypted properly
(or so it seemed), yet the deflate
routine was returning an invalid
CRC (Cyclic Redundancy Check)
error. The bizarre thing was the
deflated file was the correct size,
and the text looked to be correct. |
resorted to adding debugging
statements to try and track it
down. For every character
unpacked for the archive, | added
code to write out the character and
an updated CRC value including
that character. | then unpacked the
file with WinZip and wrote a little
application that calculated the
CRC for the unpacked file, charac-
ter by character. | then compared
both debug logs and found that
Abbrevia was unpacking a single
character in the middle of the file
incorrectly (it involved the
number 32768, believe it or not).
From there, it was the work of
moments to find the bug and fix it.

That little tale wasn’t to brag
about my debugging skills, or to
admit that Abbrevia had that
particular bug, but it got me
thinking. Abbrevia was calculating
the CRC by using this big table of
256 1longints. How had we,
TurboPower, originally built this
table? Did we copy it from some
other source, way back when, or
had we originally written a pro-
gram to generate it? | decided to
investigate, and this article is what
I discovered. | warn you now: there
is mathematics ahead (the men-
tion of which is enough to give Our
Esteemed Editor the screaming
heebie-jeebies, not because he
won’t understand it, but because
he has to convert my Word docu-
ment with italic x and **'scripts all
over the place into Ventura Pub-
lisher). Also ahead are some down-
right bizarre bit manipulations.

August 1999

Bring It On

CRCs are a form of checksum. A
checksum is some kind of arithme-
tic operation on a block of data
(usually known as the message) to
produce an integer value. This inte-
ger value can then be used to check
that the block hasn’'t changed
through being transmitted over a
phone line between modems, or
after having been stored on some
storage medium or in some
archive. The theory goes like this:
if the checksum is stored with the
block of data, when the data is
received, the reader application
can recalculate the checksum for
the block and compare it with the
stored checksum. There are two
possibilities for the comparison.
First, the computed and the stored
checksum do not match, in which
case either the block was not read
properly or was corrupted, or that
the stored checksum itself was not
read properly or was corrupted.
We can’t tell either way so we
assume that the block was cor-
rupted and we try and read it again.
The second possibility is that the
computed and stored checksums
match, in which case we assume
that the block of data is valid.

Of course, inthe second case the
block of data could still be invalid
but, luckily (or unluckily, depend-
ing on your point of view), happens
to generate the same checksum as
the original. The theory of
checksums aims to improve the
chances of detecting errors in the
received block of data.

There are three main uses of
checksums. Thefirstis the obvious
one: detecting transmission errors
when sending a block of data
across some phone line which is
prone to noise (it is assumed that
the noise would cause bit errors in
the data being transmitted: a 0 gets
received as a 1, and so on). The
second use of checksumsiis by disk
controllers to verify that the data

The Delphi Magazine

Algorithms
00Sal)|V

by Julian Bucknall

read from a sector equals the data
that was originally written there.
Compression programs use CRCs
to verify that the data compressed
in an archive decompresses prop-
erly (in other words that the
archive file was not corrupted, or
that the compressor or decom-
pressor code did not have bugs, as
in my debugging session).

In the early days, for example
with the early XMODEM file transfer
protocol, the checksum was a
simple sum of all the bytes in a
transmission block, modulo 256
(the simple way to calculate this is
to add up all the byte values in the
block using a byte variable; the
implicit discarding of the overflow
is equivalent to taking the sum
mod 256). There is one big prob-
lem with this checksum: it's not
very good at detecting errors in
blocks over 256 bytes in size
(which is one reason why the
XMODEM protocol uses 128 byte
blocks). If two bytes get swapped
through transmission errors, the
checksum from the bad block will
equal the checksum from the good
block. If two bits get flipped in one
byte and the same two bits get
flipped in another: this simple
checksum wouldn’t notice.

A better checksum in this case
would be a hash algorithm, such as
those | discussed in my two-parter
on hash tables (The Delphi
Magazine, February and March
1998). Different bytes in the block
affect the hash value in different
ways, so simple transpositions of
bits and bytes are not missed as
easily. Hash values are usually
32-bit integers, meaning that, pro-
viding the hash function was a

33

good one, the probability of two
blocks of data having the same
hash value is one in 2%

Deep Water

CRCs, however, provide a better
checksum than, say, ELF hash (and
can indeed be used as hash
values). The reason is that CRCs
are calculated with very simple bit
shifts and XOR operations, and
hence are very easy to program in
hardware. =~ The mathematics
behind them (Galois Field theory)
enable us to accurately predict the
effects of various types of error. In
fact, the standard CRC-16 algo-
rithm has been devised to detect
all errors that change an odd
number of bits, all errors that
change 2 bits (providing the block
is less than 32,767 bits long), all
errors that consist of a single burst
of 16 or fewer bits, and so on.

So what exactly are these CRC
values, and just how is a CRC calcu-
lated? A CRC is a checksum on the
entire block of data, but instead of
using addition as the operation on
each byte, ituses division. ACRCis
the remainder of a division of the
block of data (being viewed as a
very large polynomial) by another,
smaller, polynomial, using modulo
2 arithmetic.

Before you start slowly shuffling
away, whistling nonchalantly, won-
dering why | haven’t been locked
up vet, let’s go back to high school
[secondary school, Julian: we know
you're a Brit! Ed] and do some long
division. Way back when, before
calculators, we learned how to do
division longhand. An example is
shown in Figure 1, where we divide
34,567 (the dividend) by 12 (the
divisor) to give 2,880 (the quotient)
with 7 left over (the remainder).

0 Figure 1: Long division.

34

3x* - 2x* + 9x -12

X+ 2) 3x"+ 4x° + 5x° + 6x + 7

3x* + 6x°
-2x° + 5x2
-2x’ - 4x?
9x° + 6x
9x* +18x
12x + 7
12x -24

0 Figure 2: Polynomial division.

Simple, huh? But | wonder how
many people learned how to do
polynomial division: division of
one polynomial by another? Well,
it's just like long division, really.
Let’s divide 3x* + 4x’ + 5x’ + 6x + 7 by
X + 2. A nice simple example to set
us off! Well, we just proceed as for
long division, except that the coef-
ficients at each stage do not carry
over into the next column, as we do
with base 10 division. x + 2 divides
into 3x" +4x’, 3x’ times with remain-
der -2x’. We start building up the
polynomial division the same way
we did long division; follow along
with Figure 2.

Bring down the 5x* and continue.
x + 2 divides into -2x’ + 5x°, -2x’
times, with remainder 9x’. Bring
down the 6x. x + 2 divides into 9x° +
6x, 9x times, with remainder -12x.
Finally bring down the 7. x + 2
dividesinto-12x +7,-12 times, with
remainder 31. So that’s the answer:
3x*+4x° + 5x* + 6x + 7 divided by x +
2 gives 3x® - 2x* + 9x - 12, with
remainder 31.

Notice that the degree of the
remainder polynomial is less than
the degree of the divisor polyno-
mial. (The degree of a polynomial is
the largest power of x in the poly-
nomial: the degree of the dividend
in our example is 4, of the divisor,
1, of the remainder, 0.)

Notice something else, though.
We don’t need those x, X’ terms and
the like, they can just be removed
and their presence assumed.
Figure 3 shows the same division
with no x terms; we are dividing [3
456 7] by[12]togive [3-29-12]
with remainder [31], this represen-
tation saving both me and OEE
some typographic effort.

It looks a little more like long
division now, doesn’t it? Again the

The Delphi Magazine

main difference is that there are no
carries between coefficients,
which is why you see those weird
terms with minus signs.

Fast Changes

Now that you can see how polyno-
mial division works, let's now
imagine that the polynomials we
want to use as dividends and divi-
sors have coefficients that are
either 0 or 1 only, binary polynomi-
als if you like. Figure 4 shows the
divisionof[101110] by [101]to
give [1 00 1] with remainder [1 -1].
In fact, the coefficients all turn out
to be 0 or 1 in the division sum as
well, except for that pesky -1 that
managed to creep in to spoil the
party. How to get rid of it?

Enter modulo 2 arithmetic.
When | was at school (it’s certainly
Nostalgia City around here this
month) we learnt about modulo 12

3 -2 9 -12
12)3 4 5 6 7
3 6
-2 5
-2 -4
9 6
9 +18
12 7
12 -24

0 Figure 3: Polynomial division
with no x in sight.

arithmetic as clock arithmetic. We
pretended that the 12 on a clock
face was 0, and then used the face
to do arithmetic. 5 + 9 equals 2 in
clock arithmetic (ie advance 9
hours from 5 o’clock to make 2
o’clock), and so 2 - 9 equals 5. No
negatives! At university, of course,
we extended this to different bases
and learnt chunky theorems by
Fermat about it, but for now | want
you to think about what modulo 2
arithmetic means.

Well, for a kick-off, the only
digits we have to worry aboutare 0
and 1. Let’s consider addition: 0+ 0
equals 0.0+ 1equals1,asdoes 1+
0. And 1 + 1 equals 0. (If you have
trouble understanding this result,
consider a clock face with just two
points,0and 1. Adding 1 to 1 would
bring you back to 0 again.) And

Issue 48

subtraction?0-0=0;0-1=1;1-0=
l;and1-1=0.

But wait! Have a look at that
again. Addition and subtraction
are equivalentin modulo 2 arithme-
tic, it doesn’t matter whether the
operator is a plus or a minus, the
answer is the same. Those of you
who are boolean buffs will also
notice something else: addition or
subtraction modulo 2 is equivalent
to the XOR operation: 0 XOR0=0, 1
XOR 0 = 1, and so on. Also, in
moludo 2 arithmetic, multiply is
equivalent to AND; the proof is left
as a very easy exercise for the
reader.

If we use modulo 2 arithmetic
with the binary polynomial divi-
sionin Figure 4, we end up with the
remainder of [1 1]. All coefficients
are now 0 or 1; all operations turn
out to be XOR operations. Sud-
denly we are in bit twiddling land
and we can leave the explicit poly-
nomials in x behind; we’ll still refer
to the components as polynomials
though to emphasize the fact we're
using modulo 2 arithmetic.

Notice that if the divisor polyno-
mial has n bits (the degree is n-1),
then the remainder is at most n-1
bits in length. This is the equiva-
lent of saying in normal long divi-
sion that the remainder is always
less than the divisor.

So this is CRC, then. We take a
block of data and view it as a very,
very long binary polynomial, with
its coefficients being the individual
bits in the block. We then divide
this very long binary polynomial
using modulo 2 arithmetic with a
special magic polynomial (usually
called the generating polynomial)
and the remainder of this division
is the CRC value.

The reason I'm going to call the
generating polynomial the magic
polynomial in this article is that the
mathematics to identify good gen-
erating polynomials from bad ones
is waaaaay beyond normal school
maths and the majority of my read-
ers (which is Dilbertspeak for ‘I've
never taken a course on Galois
Field theory, so | don’t know the
maths either”).

A couple of examples of magic
polynomialsare,[11000000000
000101]for CRC-16 (which can be

36

written as $18005),and [1000100
000010000 1] for CRC-CCITT
(which can be written as ($11021).
Both of these are 17-bit polynomi-
als and hence would generate
16-bit CRC values. (Infact, as it hap-
pens, it turns out that the reversed
polynomials are also good magic
polynomials.) For CRC-32, the divi-
sor is a 33-bit polynomial with 1s at
positions 32, 26, 23, 22, 16, 12, 11,
10, 8,7,5, 4, 2,1, and 0, and would

generate 32-bit CRCs (this
polynomial can be written as
$104C11DB7).

So, is that the end of the article
then? Well, no, not unless you want
to write a Delphi routine for divid-
ing an 8,192-bit polynomial by a
17-bit polynomial to calculate the
CRC for a 1,024-byte block with
CRC-16. | certainly don’t, so we’ll
investigate ways of making the
calculation easier.

Latest Craze

Think back to our long division
example where we were dividing
34,567 by 12. We started off by
selecting the leftmost two digits,
34, and then dividing them by 12.
At that point, we didn’t really know
or care what the following digits of
the dividend would have been, we
could have been dividing 34 by 12
or 34,456,789 by 12: it didn’t
matter. We only cared about the
remaining terms in the dividend
when we had to bring the next digit
down for the next stage of the divi-
sion.

So let’s devise an algorithm for
calculating the remainder of divid-
ing a 1,000-digit number (or what-
ever) by 123, say. Notice we don’t
care really how big the dividend is,
we just know it’s larger than
MaxLongInt and needs a flipping
long string to hold the digits.
Remember we don’t want the quo-
tient, we are only interested in the
remainder. (If you look at Figure 1
again, you may see what’s going on
better.)

Assume we have a work variable
to hold the current remainder.
This can be a simple integer vari-
able. In CRC-land this variable is
known as the register. Initialize it to
0; in other words, we start off with a
remainder of 0. We shall read the

The Delphi Magazine

0 Figure 4: Binary polynomial
division.

dividend, digit by digit from the
left.

1. Get the next digit from the div-
idend. If there is no next digit (ie
we’ve exhausted the dividend
string), stop. The register holds
the remainder.

2. Otherwise, multiply the regis-
ter by 10 and add this next digit
from the dividend.

3. Calculate the register value
mod 123, and put it back into the
register. Go back to step 1.

That's it. Pretty simple, huh? We
didn’'t need to know how big the
dividend was, we just concen-
trated on each individual digit,
performed a couple of simple
arithmetic operations on each,
and, before we knew what was
happening, we’'d calculated the
remainder.

So, this is what we do with
binary polynomials to calculate
the CRC. It's made even easier
because we don’t have to multiply
or apply the mod operator, we just
shift bitsand XOR. Let’s outline the
algorithm for a 17-bit divisor (eg
CRC-16), we'll store it in a longint.
We need a register variable again;
we’ll make it 32-bits in size, a
longint, so we can manipulate it
with the 17-bit divisor. We initial-
ize it to 0 as before. We assume
that the block can be read bit by bit
(we’ll get the bits in a byte from the
most significant bit down to the
least significant bit). | shall assume
that the least significant bit of the
register is known as bit 0, and the
most significant bit is known as bit
31. Bit 16 is then the start of the
second word of the Tongint regis-
ter.

Take a look at Figure 4 to see
what’s going on as | show the algo-
rithm.

1. Get the next bit from the
block. If there is no next bit (ie

Issue 48

we’ve exhausted the block), stop.
The lower 16 bits of the register
hold the remainder.

2. Shift the register left by one bit
and add the next bit from the block
as bit zero.

3. If the bit at position 16 of the
register is 0, go back to step 1.

4. If the bit at position 16 is 1,
XOR the magic polynomial with the
register.

This looks a little funny com-
pared with the normal arithmetic
one. What's all this testing of the
bit at position 16 of the register for?
Well, in modulo 2 arithmetic, we
know that a polynomial will only
divide another if the dividend is at
least the same degree as the divi-
sor. The divisor is of degree 16, so
we test bit 16 of the dividend to be
1. Once it is we know we can divide
the register by the divisor (it'll
always divide once) and then we
subtract (ie XOR) one times the
divisor from the register to give the
new remainder. Shifting left by one
is of course equivalent to multiply-
ing by 2. So, you see, it’s pretty well
equivalent to normal arithmetic.

But, notice one other thing. We
never really use the top 16 bits of
the register, nor of the divisor. We
can get away by assuming that bit
16 of the divisor is always 1 and,
when we perform the XOR, bit 16 of
the register always gets set to zero.
So, here’s the better CRC algorithm

with register and divisor both 16
bits long.

1. Get the next bit from the block.
If there is no next bit (ie we’ve
exhausted the block), stop. The
register holds the remainder.

2. If the top bit of the registeris 0,
shift the register left by one bit, and
add the next bit from the block as
bit zero. Go to step 1.

3. Otherwise, shift the register
left by one bit, add the next bit from
the block as bit zero, XOR the
magic polynomial with the regis-
ter. Go to step 1.

Time for some Delphi code,
methinks. Listing 1 has a standard,
pretty slow, implementation of the
16-bit CRC as used by
XMODEM/CRC. The first parame-
ter is the buffer, and the second the
number of bytes in the buffer. The
third parameterisaPoly. Thisisthe
magic polynomial we’ll be using for
divisor, less the most significant
bit. For XMODEM/CRC the value of
aPoly is $1021. Another polynomial
you can use if you want to experi-
ment is the one for the CRC-16 algo-
rithm: $8005. The return value type
is defined as TaaCRC16 (a word) and
will be the resulting CRC.

The routine with the $1021
polynomial gives the same
answers as the standard
table-driven XMODEM/CRC calcu-
lation, so we're obviously on the
right track.

0 Listing 1: Simple CRC calculation (XMODEMY/CRC).

function AAGet16BitCRCStd(var aBuffer; aBuflen :

aMagicPoly : TaaCRC16) : TaaCRC16;
const
TopmostBitMask = $8000;
var
i : integer;
Buf : TByteArray absolute aBuffer;
Reg : TaaCRC16;
B : byte;
bit : integer;
begin
{initialise the register}
Reg := 0;
{do for all bytes in the buffer...}
for i := 0 to pred(aBufLen) do begin
B := Buf[il;

{do for a11’b1ts in the current byte}

for bit := 0 to 7 do begin

integer;

{if the high bit of the register is 1, shift the register left by one, xor
in the next bit from the byte, and xor the magic polynomial}

if ((Reg and TopmostBitMask) <> 0) then
Reg := (Reg shl 1) xor (B shr 7) xor aMagicPoly

{otherwise the high bit of the register is 0, shift the register

Teft by one, xor in the next bit from the byte}

else
Reg := (Reg sh1l 1) xor (B shr 7);
B :=B shl 1;
end;
end;

{return the register}
Result := Reg;
end;

August 1999

The Delphi Magazine

Dreaming In Metaphors

Note that | said Listing 1 was slow.
The reason it’s slow is that we are
processing the block bit by bit. It
would be interesting to see if there
was a way to process the block a
byte at a time instead.

Consider the case where we're
halfway through calculating the
CRC for a block of data. We’ve just
read a new byte from the block,
and we’re about to feed it into the
register. Suppose the top byte of
the register has bits labelled r7, r6,
r5, r4, r3, r2, rl, and r0. r7 then
decides for us whether we are
about to XOR the magic polyno-
mial into the register. If r7 is clear
we won't XOR, ifitis setwe will. Let
the top byte of the magic polyno-
mial be p7, pé, ..., p1, po.

After the first bit of the input
byte is fed into the register, the top
part of the polynomial either looks
like this:

ré6 r5 rd r3 r2 rl r0 xx
if r7 was clear (where xx was the
top bit of the least significant byte

of the register), or like this:

(r6 + p7) ...
(xx + p0)

(r0 + pl)

if r7 was set (+ is equivalent to
XOR, of course). We could repre-
sent these two cases as one:

(r6 + r7*p7) ...
(xx + r7*p0)

(r0 + r7*pl)

where * is the usual multiplication
operator. (This isn’'t immediately
obvious, at least it wasn’t to me,
but if you draw up a table of the
possible bit values, you'll see it is
s0.) The new top bit of the register
thus depends on the values of both
ré and r7.

Feed in the next bit. It's going to
get a little more complicated now,
so be warned! Again we have two
cases: either (r6 +r7*p7)isOoritis
1. If you do the math (it's made
easier sincex +x=0and x*x=x1in
modulo 2 arithmetic), here is the
value of the new top bit in the top
byte of the register:

r5 + r7*p6 + (r6+r7)*p7

37

Brrr. But wait a moment. This says
that after two bits being fed into
the register and the shifts and
XORs having been done, the top bit
is a direct calculation on bits r7, r6
and r5 of the original register. If we
do it 6 more times, we get this as
the value in the top bit:

xx + r7*p0 + r6*pl + r5*p2 + r4*p3
+ r3*p4 + r2*p5 + rl*pé6
+ (r0+rl+r2+r3+rd+r5+r6+r7)*p7

or, to put it in layman’s terms:
xx + (a mess with rs and ps)

(where xx was the top bit of the
original lower byte). Other bits in
the register after eight applications
of this shift-and-XOR algorithm
have the same form: they consist of
an original bit shifted left 8 times,
XORed with a whole bunch of
terms that depend on the bits in
the original top byte of the register
and the magic polynomial. What
does all this tell us (apart from that
| have entirely too much time on
my hands to work this lot out)?
Firstly, the top byte of the original
register has gone, it’s been shifted
out (duh!). Of course, it leaves
behind some ‘memory’ of its pass-
ing in that mess of algebra, we’ll
come back to that in a moment.
Secondly, we’ve shifted in a byte
from the block of data into the least
significant byte of the register (the
original least significant byte has
been shifted up of course). Finally,
during all these shifts and whatnot,
the register as a whole was sub-
jected to a series of XORs, the
number and timing of which
depended solely on the bits in the
top register byte.

We are religiously feeding in bits
from the message into the bottom
of the register, and they are slowly
making their way up to the top, at
which point they play a part in the
determination of whether we
XORed the magic polynomial or
not. As the bits moved up the regis-
ter they played no part in the deci-
sion to XOR or not. In fact, they
might just well not have been
there.

So, instead of doing the XORs of
the magic polynomial piecemeal,

38

one by one, as we shift and com-
pare the top bit, we could ‘add’
them up eight at a time into one
super magic value (well, | call it
that because it does come from the
magic polynomial) which we could
then XOR after we’d shifted the reg-
ister by eight bits, ie a byte, and
moved in a byte from the block of
data.

The super magic value depends
on the magic polynomial of course,
but also on the value of the top
byte of the register (that’s what the
algebra told us). Since there are
only 256 different values of the top
byte of the register, we could
create a table of 256 16-byte super
magic values at initialization-time
(or at compile-time) for our partic-
ular magic polynomial. The CRC
algorithm then becomes:

1. Get the next byte from the
block of data. If there are none left,
stop; the register contains the CRC
value.

2.Getthe top byte of the register.

3. Shift the register left by a byte,
add in the next byte from the data
block.

4. XOR the register with the
super magic value from the table,
indexed by the original top byte.
Return to step 1.

And that’sall (!) thereistoit. The
algorithm explains the big table
found in Abbrevia. Unfortunately it
doesn’t explain how the table is
generated, so we’ve a little more to
do.

People Asking Why

What we do to generate the table is
this. The algebra we waded
through showed us that the super

magic values in the table depend
only on the top byte of the register.
What we’d like to do is to write a
routine to perform the standard
CRC shift-and-XOR algorithm on a
register whose top byte varies
from 0 to 256. The value in the reg-
ister after applying the algorithm
is the super magic value to go into
the table. Great idea, but what
about the other byte of the regis-
ter? What about the byte that gets
fed in?

Well, we showed that each bitin
the final register either gets shifted
out, or is the bit originally from 8
places to the right, XORed with
some expression involving the top
bits of the original register and the
magic polynomial. If the original
register was r7, r6, ..., r0, s7, s6, ...,
s0 (ie 16 bits) and the byte that was
moved in was b7, b6, ..., b0, then
the final value of the register after 8
bitcyclesis: s7+SMV15, s6+SMV14,
..., SO+SMVS8, b7+SMV7, b6+SMV6,
..., b0+SMVO0, where the SMVs are
the corresponding bits of the
super magic value. Easy enough:
make the s bits and the b bit all
zero, ie the lower byte of the regis-
ter and the byte that’s fed in both
zero. The value of the register
afterwards is the super magic
value.

Sowith asimple loop, we can cal-
culate the CRC table. Easy peasy.
Listing 2 has the simple details.
After we have that, we can calcu-
late the CRC value for a block of
data, a byte at a time. Listing 3
shows this simple routine.

It's a bit messy to have one
routine to calculate the table, and
another to apply the table to

0 Listing 2: Calculating CRC table (XMODEMY/CRC).

procedure AACalcl6BitCRCTable(var aTable

aMagicPoly : TaaCRC16);
const
TopmostBitMask = $8000;

var

i : integer;
Reg : TaaCRC16;
bit : integer;
begin
for i := 0 to 255 do begin
Reg := 1 shl 8;

for bit := 0 to 7 do begin

: Taal6BitCRCTable;

if ((Reg and TopmostBitMask) <> 0) then

Reg := (Reg shl 1) xor aMagicPoly
else
Reg := (Reg shl 1);

end;
aTable[i] := Reg;
end;
end;

The Delphi Magazine

Issue 48

calculate the CRC for a block of
data. We could have the table as a
static compile-time constant, but
that’s a512-byte table we're talking
about. | think it would be better to
designaCRC class. The Create con-
structor would be passed a magic
polynomial as a parameter, and
would allocate atable and generate
it. The Destroy destructor would
destroy it, of course. We'd also
have a method for calculating the
CRC of a block of data. We could
have a routine that would write out
the CRC table as a Delphi include
file for example, so you could
declare a static table.

There is something else to notice
about the preceding argument
which leads to a small optimiza-
tion: instead of feeding in bits as we
go along (they play no part in the
determination of the XOR), all we
need do is use the bits of the block
to determine whether to XOR the
magic polynomial or not, as if they
were fed into the top of the register
directly. The algorithm becomes:

1. Get the next bit from the block.
If there is no next bit (ie we've
exhausted the block), stop. The
register holds the remainder.

2. XOR the top bit of the register
with the next bit from the block.

3. If the resultis 0, shift the regis-
ter left by one. Go to step 1.

4. Otherwise, shift the register
left by one bit, XOR the magic poly-
nomial with the register. Go to step
1.

function AAGet16BitCRCTb1(var aBuffer; aBuflLen :
: TaaCRC16;

const aTable :
var
i : integer;
Buf : TByteArray absolute aBuffer;
Reg : TaaCRC16;
begin
Reg := 0; {initialise the register}
{calculate the CRC}
for i := 0 to pred(aBuflLen) do
Reg :
Result := Reg;
end;

Taal6BitCRCTable)

{return the register}

integer;

aTable[byte(Reg shr 8) xor Buf[il] xor (Reg shl 8);

O Listing 3: Calculating CRC using table (XMODEMY/CRC).

Crazy

This new algorithm has a small
gotcha though. If you think back to
the original algorithm, it stopped
when there were no more bits in
the block. The last 16 bits were still
in the register. With this new algo-
rithm the last 16 bits were never in
the register, it’s as if we were using
the original algorithm and after the
block was exhausted we then fed in
16 zero bits to force the bits in the
block all the way through. The
extra zero bits wouldn’t affect the
XORing (any bit XOR zero equals
the bit we had to begin with), but it
would mean that the final CRC
would have been calculated using
all the bits in the block. This modi-
fied algorithm (feeding bits into the
top of the register) can be
extended to bytes at a time quite
easily.

But we’re not finished with the
bit twiddling tricks yet. One of the
original implementations of CRC
was in hardware for checking
receipt of a block of data that came

over a phone line. The serial port
actually sends bytes least signifi-
cant bit first, so the hardware for
calculating the CRC would get the
bytes in bit-reversed order. It
would calculate the CRC using
these reversed bytes. When it
came time to implement this in
software, instead of reversing each
byte and then using the usual algo-
rithm, the original programmer
decided to reverse everything else
and leave the bytes alone. We've
done the same ever since. So: the
register is reversed; the magic
polynomial is reversed; we shift
the register right, instead of left;
we feed in the bits in the bytes
from the message into the lower
bit of the register and this decides
whether to XOR the reversed
polynomial or not. Finally the CRC
is returned in reversed form. We
are no longer in Kansas, Toto.

Some CRC computations use
this reversed scheme, some don't.
The CRC-CCITT implementation
uses reversed bits, whereas, as
we’ve seen, the XMODEM/CRC
version does not.

0 Listing 4: Full blown 32-bit CRC calculation.

constructor TaaCRC32Calculator.Create(aMagicPoly : TaaCRC32;
aReverseBits : boolean; alnitValue : TaaCRC32;
aNotResult : boolean);
begin
inherited Create;
ccMagicPoly := aMagicPoly;
ccReverseBits := aReverseBits;
ccInitValue := alnitValue;
ccNotResult := aNotResult;
end;
function TaaCRC32Calculator.GetCRCStd(var aBuffer;

aBuflLen : integer) : TaaCRC32;
var
i : integer;
Buf : TByteArray absolute aBuffer;
Reg : TaaCRC32;
bit : integer;

B : byte;
MagicPoly : TaaCRC32;
begin
Reg := cclnitValue; {initialise the register}

{split the flow: first the case for feeding in bytes the
least significant bit first}
if ccReverseBits then begin

{reverse the magic polynomial}

MagicPoly := ReverseBits(ccMagicPoly, 32);

{do for all bytes in the buffer...}

for i := 0 to pred(aBuflLen) do begin

B := Buf[i];

40 The Delphi Magazine

for bit := 0 to 7 do begin
if ((Reg and 1) xor (B and 1)) <> 0 then
Reg := (Reg shr 1) xor MagicPoly

else
Reg := (Reg shr 1);
B :=B shr 1;
end;
end;

end
{now the case for feeding in bytes the most significant
bit first}
else begin
{do for all bytes in the buffer...}
for i := 0 to pred(aBufLen) do begin
B := Buf[il;
for bit := 0 to 7 do begin
if ((B shr 7) xor (Reg shr 31)) <> 0 then
Reg := (Reg shl 1) xor ccMagicPoly
else
Reg := (Reg shl 1);
B :=B shl 1;
end;
end;
end;
{if required, not the result}
if ccNotResult then
Reg := not Reg;
Result := Reg; {return the register}
end;

Issue 48

procedure TaaCRC32Calculator.ccCreateTable;

const

TopmostBitMask = $80000000;
var

i : integer;

Reg : TaaCRC32;

bit : integer;

begin
New(ccTable);
for i := 0 to 255 do begin
if ccReverseBits then
Reg := ReverseBits(i, 32)
else
Reg := TaaCRC32(i) shl 24;
for bit := 0 to 7 do begin

aBuflen :
var

i : integer;

Reg : TaaCRC32;

begin

and do so}

if ((Reg and TopmostBitMask) <> 0) then for i :=
Reg := (Reg shl 1) xor ccMagicPoly Reg :=
else else
Reg := (Reg shl 1); for i :=
end; Reg :=
if ccReverseBits then sh1 8)

ccTabler[i] := ReverseBits(Reg, 32)

se
ccTabler[i] := Reg;
end;
end;

Result := Reg;
end;

0 Listing 5: Generating the table and computing a 32-bit CRC with it.

The next bit of weirdness is the
initial value for the register before
we start dividing. We’ve been using
0 all along, because it follows
directly from the mathematics.
The other value used is -1 (or
$FFFF). The reason this alternative
(all 1 bits) is sometimes used is
that, if the block starts with a
bunch of zero bits, they will play no
partinthe CRC calculation. The ini-
tial values of the register will be all
zero until we get the first 1 bit from
the message. So by forcing the reg-
ister to all 1s to begin with means
that the CRC XOR calculations
start straight away. In fact, it's a
little less obvious than that if we
were implementing the original
division. The -1 is not exactly the
original value of the register, it is
XORed into the first four bytes of
the message. With our snazzy new
algorithm where we feed bits
directly into the top bit of the regis-
ter, we can set the initial value to -1
and it will have the same effect as
XORing with the first 4 bytes of the
message.

The final funky parameter for
CRC calculations is that some

implementations insist on the
routine returning the one’s com-
plement of the final CRC value. To
get the one’s complement you
either XOR the final value with
$FFFF, or you NOT the final value
(both are equivalent). In general, if
the initial value of the registeris -1,
you NOT the final CRC.

The CRC-CCITT algorithm
requires both the initial value of
the register to be -1 and to NOT the
final value.

Just Like You Said
We're still not quite done of
course, we have to think about
32-bit CRCs. Luckily all the previ-
ous exposition applies just as well
to the 32-bit world. We don’t have
to change anything, apart from
making the register and CRC value
a longint. Actually, to make compi-
lation with Delphi 4 easier we’ll
defineaTaaCRC32 type which will be
a longint, except for Delphi 4 (and
later) where it will be a longword.
The main CRC used in the ZIP file
format is known as CRC-32. The ini-
tial value of the register is -1, we
need to NOT the final value, and we

0 Table 1: Common 16-bit CRC implementations.

The Delphi Magazine

function TaaCRC32Calculator.GetCRC(var aBuffer;
integer) :

TaaCRC32;

Buf : TByteArray absolute aBuffer;
{if the CRC table hasn't yet been calculated, allocate it

if (ccTable = nil) then
ccCreateTable;
{initialise the register}
Reg := cclInitValue;
{calculate the CRC}
if ccReverseBits then
0 to pred(aBuflLen) do
ccTable~r[byte(Reg) xor Buf[i]] xor (Reg shr 8)

0 to pred(aBuflLen) do
ccTabler[byte(Reg shr 24) xor Buf[i]] xor (Reg

{if required, not the result}
if ccNotResult then

Reg := not Reg;
{return the register}

have to use the reversed algo-
rithm. The magic polynomial is
$04C11DB7. Another standard
32-bit CRC | found is the AAL5
method. Here, the initial value of
the register is -1, we need to NOT
the final value, and we have to use
the standard (non-reversed) algo-
rithm. Again, the magic polynomial
is $04C11DB7. The AALS implemen-
tation requires the final CRC
produced to be byte reversed (but
not bit reversed). Listing 4 shows
the 32-bit CRC calculation
extracted from the CRC class on
this month’s disk; this method will
correctly cater for all the different
cases | mentioned a moment ago.

For a table-driven version, we
can do the same process as before.
The table is now 1Kb in size, being
256 longint values. Again we can
create a static table, or we can gen-
erateitatruntime. Listing 5 has the
table calculation and the CRC
computation using it.

Let me say in closing that | found
an inordinate number of different
CRC implementations out there.
They all tended to use the stan-
dard polynomials ($1021, $8005,
and $04C11DB7), but some of them
reversed the bits, some didn't,
some used different initial values
than the standard. Be warned.

On the accompanying diskette
you'll find a class implementation
of both 16- and 32-bit CRCs. It has
methods for calculating the CRC of
a complete block, and also for
updating a CRC a byte at a time (of
course, with the latter routine you
are responsible for setting the

Issue 48

0 Table 2: Common 32-bit CRC implementations.

initial value of the CRC, and of NOTting the final CRC, if
required). For fun, | added a method to each class to
dump the CRC table as a Delphi include file, so you can
write a small app to generate a static CRC table for
another, larger, application. Tables 1 and 2 show the
definitions of the standard CRC implementations.

I hope this article has been instructive. | must admit
to having been ignorant of how all this stuff worked,
especially given the terse nature of a typical table-
driven calculation, and so it was a voyage of discovery
for me. Ittook a good week until | was sure | understood
how to get from the basic division to the bit-reversed,
funky initial value, table-driven implementation. | hope
I’'ve managed to crystallize things for you too.

Julian Bucknall is checksummed, sealed and deliv-
ered. He’s looking forward to that Future Love
Paradise when his algorithms book is done. He can be
reached at julianb@turbopower.com. The code that
accompanies this article is freeware and can be used
as-is in your own applications.

© Julian M Bucknall, 1999

References

C Programmer’s Guide to NetBIOS, W. David Schwaderer
(Howard W Sams & Company)

The CRC Pitstop at www.ross.net/crc

August 1999 The Delphi Magazine

	Bring It On
	Deep Water
	Fast Changes
	Latest Craze
	Dreaming In Metaphors
	People Asking Why
	Crazy
	Just Like You Said
	References

